Answer:
Option B
Explanation:
We have
12+2.22+32+2.42+52+2.62+ .......
A= Sum of first 20 terms
B= Sum of first 40terms
$\therefore$ A= 12+2.22+32+2.42+52+2.62+........+2.202
A= (12+22+32+.........+202) + (22+42+62+........+202)
A= (12+22+32+.......+202)+4(12+22+32+........+102)
$A= \frac{20\times 21\times 41}{6}+\frac{4\times10 \times 11\times21}{6}$
$A= \frac{20\times 21}{6}(41+22)=\frac{20\times 41\times63}{6}$
Similarly , B= (12+22+32+........+402)+ 4 ( 12+22+32+.......+202)
$B= \frac{40\times41\times81}{6}+\frac{4\times20\times21\times41}{6}$
$B= \frac{40\times41}{6}(81+42)=\frac{40\times41\times123}{6}$
Now, B-2A=100λ
$\therefore$ $\frac{40\times41\times123}{6}-\frac{2\times20\times21\times63}{6}=100\lambda$
$\Rightarrow$ $\frac{40}{6}(5043-1323)=100\lambda$
$\Rightarrow$ $\frac{40}{6}\times 3720=100\lambda$
$\Rightarrow$ $40\times620=100\lambda$
$\Rightarrow$ $\lambda =\frac{40\times620}{100}=248$